Immobilization and stability studies of a lipase from thermophilic Bacillus sp: The effect of process parameters on immobilization of enzyme
نویسندگان
چکیده
A thermostable lipase was partially purified from the culture supernatant of a thermophilic Bacillus sp. The enzyme is optimally active at 60oC and pH 8.0. The enzyme showed enhancement in activity in presence of benzene or hexane (30% v/v each). The activity (assayed by determining the release of pNP from pNP laurate) was stimulated up to 60% of these solvents in enzyme reaction mixture. The catalytic properties of this thermostable enzyme can be further improved via the use of different immobilization techniques and reaction conditions. Enzyme was immobilized on different solid supports and their enzyme activity and stability was compared. The enzyme was adsorbed on silica and HP20 beads followed by cross-linking with gluteraldehyde on HP-20, which improved the thermostability of enzyme. The optimum pH (pH 8.5) was nearly same for aqueous and immobilized enzyme while optimum temperature was nearly 5oC higher in case of immobilized enzyme. The immobilized/cross linked enzyme was more thermostable at 70 and 80oC in comparison to aqueous and surface adsorbed lipase on silica and HP-20. The optimum temperature for esterification reactions was determined to be 60-65oC. Half-life of immobilized lipase was nearly 2.5 x higher than the aqueous enzyme at 70oC. Esterification of methanol and oleic acid to methyl oleate by immobilized enzyme was studied in detail.
منابع مشابه
Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis
Background: Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. Objective: The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorpti...
متن کاملImmobilization of Rhizomucor miehei Lipase on High Density Polyethylene
Immobilization of Lipase produced from Rhizomucor miehei on HDPE fine powder was investigated. As compared to an aqueous system, immobilization in a non-aquous organic medium such as n-hexane was not successful and caused enzyme denaturation. Prewetting the support with ethanol increased the immobilized protein and enzyme activity as much as 31% and 34%, respectively. The maximum immobilized a...
متن کاملOptimization of Candida rugosa lipase immobilization parameters on magnetic silica aerogel using adsorption method
Magnetic silica aerogel in hydrophobic and hydrophilic forms were used as support to immobilize Candida rugosa lipase by adsorption method. Response surface methodology (RSM) was employed to study the effects of the three most important immobilization parameters, namely enzyme/support ratio (0.3-0.5, w/w), immobilization time (60-120 min) and alcohol percentage (20-40, %v/v) on the specific act...
متن کاملSynthesis and Characteristics of Mesoporous Sol-gels for Lipase Immobilization
Enzyme cost is the major problem for industrial scale application. Immobilization is a promising approach to moderate the enzyme cost factor and increase its stability and activity. In this study, sol-gel method was used to prepare the immobilization platform and entrapped lipase as one of the most used enzyme in dairy processing, cosmetics and pharmaceutical industries. Lipase from Candida rug...
متن کاملOptimization of Lipase Immobilization
Pseudomonas aeruginosa BBRC-10036 was used for lipase production. The organism secreted the enzyme extracellulary. In order to purify the enzyme, precipitation was done first, and then this lipase has been purified by Ion exchange Chromatography leading to 2.3-fold purification and 11.47% recovery. Lipase from P.aeruginosa was entrapped into Ca-alginate gel beads and effect of independent varia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006